Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Matsumura 抄书系列. Chevalley 定理是这学期课程里面的某一个presentation内容. 对于一般的情况下, 一个morphism 不一定把一个algebraic set 映射到algebraic set, 但是一个finite type morphism 却能保持constructible sets. 在affine space上的结论就是这个定理的直接推论, 证明起来更简单一些.

Constructible Sets

We give the most basic constructible set in Noetherian space first.

Definition 1. In a topological space XX, ZXZ\subset X is said be locally closed if for every zZz\in Z, there’s a neighborhood, UXU\subset X s.t. UZU\cap Z is closed in ZZ.

We give another interpretation of locally closed: ZZ is locally closed if and only if ZZ is the intersection of an open and closed set.

For ZZ being the intersection of open and closed set, ZZ is obviously locally closed. For ZZ being locally closed, Z=zZ(UzZ)=zZ(UzVz)Z=\bigcup_{z\in Z}(U_{z}\cap Z)=\bigcup_{z\in Z}(U_{z}\cap V_{z}) with UzU_{z} open and VzV_{z} closed, and zVzz\in V_{z} for any zZz\in Z. So Z=(zZUz)(zZVz)Z=(\bigcup_{z\in Z}U_{z})\cap (\bigcap_{z\in Z}V_{z}).

Definition 2. In Noetherian space XX, ZZ is constructible if ZZ is a finite union of locally closed sets in XX.

From above argument, Z=i=1m(UiVi)Z=\bigcup_{i=1}^{m}(U_{i}\cap V_{i}) with UiU_{i} open and ViV_{i} closed. It’s easy to see the union, intersection and complement of constructible sets are also a Constructible sets.

Proposition 1. In Noetherian space XX, X0X_{0} is irreducible in XX, ZXZ\subset X is constructible if and only if X0ZX_{0}\cap Z is not dense in X0X_{0} or X0ZX_{0}\cap Z contains a nonempty open subset of X0X_{0}.

Proof

Proof. (\Rightarrow): For ZZ Constructible and X0X_{0} irreducible, ZX0=i=1m(UiFi)Z\cap X_{0}=\bigcup_{i=1}^{m}(U_{i}\cap F_{i}) with FiF_{i} irreducible, then UiFi=Fi\overline{U_{i}\cap F_{i}}=F_{i}. If X0Z=i=1mFi=X0\overline{X_{0}\cap Z}=\bigcup_{i=1}^{m}F_{i}=X_{0}, so Fi=X0F_{i}=X_{0} for some ii, Then UiFi=UiX0U_{i}\cap F_{i}=U_{i}\cap X_{0} is a nonempty open subset of X0ZX_{0}\cap Z.

(\Leftarrow): We use the Noetherian induction of Noetherian space. For Z=Z=\varnothing, the result is trivial. Assume all subsets of ZZ satisfies the condition above is Constructible. Let Zˉ=F1Fn\bar{Z}=F_{1}\cup \cdots\cup F_{n} with FiF_{i} irreducible. F1Z=F1\overline{F_{1}\cap Z}=F_{1}, since F1F_{1} is irreducible, there’s a closed subset F1F_{1}' of F1F_{1} such that F1F1ZF_{1}-F_{1}'\subset Z is open in ZZ. Take F=F1F2FnF^{*}=F_{1}'\cup F_{2}\cup \cdots\cup F_{n}, then Z=(F1F)(ZF)Z=(F_{1}-F^{*})\cup (Z\cap F^{*}). F1FF_{1}-F^{*} is obviously locally closed. For ZFZ\cap F^{*}, if X0X_{0} irreducible and ZFX0=X0\overline{Z\cap F^{*}\cap X_{0}}=X_{0}, then X0FX_{0}\subset F and ZFX0=ZX0Z\cap F^{*}\cap X_{0}=Z\cap X_{0} open. Since ZFFZˉ\overline{Z\cap F^{*}}\subset F^{*}\subset \bar{Z}, by induction hypothesis, ZFZ\cap F^{*} is constructible, so ZZ is constructible. ◻

Now we give the general theory of Constructible sets.

Lemma 1. Let φ:AB\varphi:A\to B be a homomorphism of rings, X=Spec(A)X=\mathrm{Spec}(A), Y=Spec(B)Y=\mathrm{Spec}(B) and f:φ:YXf:\varphi^{*}:Y\to X. Then f(Y)f(Y) is dense in XX if and only if the kernel of φ\varphi is contained in NA\mathfrak{N}_{A}.

Proof

Proof. Assume f(Y)=V(I)\overline{f(Y)}=V(I) for some ideal II, then I=pYφ1(p)=φ1(NB)I=\bigcap_{\mathfrak{p}\in Y}\varphi^{-1}(\mathfrak{p})=\varphi^{-1}(\mathfrak{N}_{B}). For V(I)=XV(I)=X, I=NAI=\mathfrak{N}_{A} and hence kerφNA\ker\varphi\subset\mathfrak{N}_{A}.

Conversely, if kerφNA\ker\varphi\subset\mathfrak{N}_{A}. Since φ1(NB)NAφ1(0)\varphi^{-1}(\mathfrak{N}_{B})\supset \mathfrak{N}_{A}\supset \varphi^{-1}(0). Take radicals then we get NA=φ1(NB)\mathfrak{N}_{A}=\varphi^{-1}(\mathfrak{N}_{B}). Thus V(I)=f(Y)V(I)=\overline{f(Y)}. ◻

Theorem 1 (Chevalley). Let AA be a Noetherian ring, BB is a finitely generated AA-algebra, φ:AB\varphi:A\to B is the canonical homomorphism. X=Spec(A)X=\mathrm{Spec}(A), Y=Spec(B)Y=\mathrm{Spec}(B), f:φ:YXf:\varphi^{*}:Y\to X. Then the image of a constructible set in YY is constructible.

We first consider the image of YY in XX, we want to show it’s a constructible set.

Proof

Proof. We use the above proposition to prove the theorem. For any X0X_{0} irreducible in XX, let X0=V(p)X_{0}=V(\mathfrak{p}) for some pX\mathfrak{p}\in X. Consider f(Y)X0f(Y)\cap X_{0}, if f(Y)X0f(Y)\cap X_{0} is dense in X0X_{0}, then for φ:A/pB/pB\varphi':A /\mathfrak{p}\to B /\mathfrak{p}B, by lemma above, kerφNA/p\ker\varphi'\subset\mathfrak{N}_{A /\mathfrak{p}}. We need to find an open subset of f(Y)X0f(Y)\cap X_{0}. Let A=A/pA'=A /\mathfrak{p}, B=B/pBB'=B /\mathfrak{p}B, X=Spec(A/p)X'=\mathrm{Spec}(A /\mathfrak{p}) and Y=Spec(B/pB)Y'=\mathrm{Spec}(B /\mathfrak{p}B), f:YXf^{*}:Y'\to X'. Let B=A[x1,,xn]B'=A'[x_{1},\dots,x_{n}], and A=A[x1,,xr]A^{*}=A[x_{1},\dots,x_{r}] s.t. x1,,xrx_{1},\dots,x_{r} algebraically independent and xr+1,,xnx_{r+1},\dots,x_{n} algebraic over AA^{*}. Then i=1njgjixji=0\sum\limits_{i=1}^{n_{j}}g_{ji}x_{j}^{i}=0 with gjiAg_{ji}\in A^{*}. Then j=k+1ngjnj\prod\limits_{j=k+1}^{n}g_{jn_{j}} is a nonzero polynormial with coefficients in AA. Let aa be a coefficient of i=1njgjixji=0\sum\limits_{i=1}^{n_{j}}g_{ji}x_{j}^{i}=0. Now we show XaX_{a} is open in f(Y)X0f(Y)\cap X_{0}. For pX\mathfrak{p}\in X' with apa\notin \mathfrak{p}, consider p[x1,,xr]=p\mathfrak{p}[x_{1},\dots,x_{r}]=\mathfrak{p}^{*}, a prime ideal in AA^{*}, then apa\notin \mathfrak{p}. Thus BpB'_{\mathfrak{p}^{*}} isintegral over ApA^{*}_{\mathfrak{p}^{*}}. By lying over theorem, q\exists \mathfrak{q} prime in BpB'_{\mathfrak{p}^{*}} s.t. qAp=pAp\mathfrak{q}\cap A_{\mathfrak{p}^{*}}^{*}=\mathfrak{p}^{*}A_{\mathfrak{p}^{*}}^{*}. So qA=(qB)A=pA=p\mathfrak{q}\cap A=(\mathfrak{q}\cap B)\cap A=\mathfrak{p}^{*}\cap A=\mathfrak{p}. Thus p=(qB)Af(Y)\mathfrak{p}=(\mathfrak{q}\cap B)\cap A\in f(Y). ◻

Then we show the general case by the following proposition.

Proposition 2. Let BB be Noetherian ring, YY' is Constructible set in Y=Spec(B)Y=\mathrm{Spec}(B). Then there is a finitely generated BB-algebra BB' s.t. the image of Spec(B)\mathrm{Spec}(B') in Spec(B)\mathrm{Spec}(B) is YY'.

Proof

Proof. If Y=XfV(I)Y'=X_{f}\cap V(I) for some ff and II, just take B=S1(B/I)B'=S^{-1}(B /I), where S={1,f,}S=\{1,f,\dots\} and then Spec(B)YSpec(B)\mathrm{Spec}(B')\cong Y'\subset \mathrm{Spec}(B).

For any open set in Noetherian space, we can write it as the finite union of basis. So we can assume Y=i=1mXfiV(Ii)Y'=\bigcup_{i=1}^{m}X_{f_{i}}\cap V(I_{i}) for some fif_{i} and IiI_{i}. For each XfiV(Ii)X_{f_{i}}\cap V(I_{i}), construct BiB_{i} as above, then take B=i=1mBiB'=\prod\limits_{i=1}^{m}B_{i}. Then Spec(B)YSpec(B)\mathrm{Spec}(B')\cong Y'\subset \mathrm{Spec}(B) ◻

For each constructible subset YY' of YY, take such a BB' s.t. Spec(B)Y\mathrm{Spec}(B')\cong Y', then the theorem proved immediately from the natural composition ABA\to B'.

评论